By Topic

Rough–Fuzzy Collaborative Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mitra, S. ; Machine Intelligence Unit, Indian Stat. Inst., Kolkata ; Banka, H. ; Pedrycz, W.

In this study, we introduce a novel clustering architecture, in which several subsets of patterns can be processed together with an objective of finding a common structure. The structure revealed at the global level is determined by exchanging prototypes of the subsets of data and by moving prototypes of the corresponding clusters toward each other. Thereby, the required communication links are established at the level of cluster prototypes and partition matrices, without hampering the security concerns. A detailed clustering algorithm is developed by integrating the advantages of both fuzzy sets and rough sets, and a measure of quantitative analysis of the experimental results is provided for synthetic and real-world data

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 4 )