By Topic

Detection and classification of sensory information from acute spinal cord recordings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

One avenue of research for partial restoration of function following spinal cord injury is the use of neural prostheses, an example of which is functional electrical stimulation (FES) devices for motor functions. Neural prostheses may also be useful for the extraction of sensory information directly from the nervous system. We suggest the spinal cord as a possible site for the detection of peripheral sensory information from neural activity alone. Acute multichannel extracellular recordings were used to extract neural spike activity elicited from peripheral sensations from the spinal cords of rats. To test the recording method and classification potential, eight classes of sensory events were recorded consisting of electrical stimulation of seven locations on rat forepaws, and another class of data during which no stimulus was present. A dual-stage classification scheme using principal component analysis and k-Means clustering was devised to classify the sensory events during single trials. The eight tasks were correctly identified at a mean accuracy of 96%. Thus, we have shown the methodology to detect and classify peripheral sensory information from multichannel recordings of the spinal cord. These methods may be useful, for example, in a closed-loop FES for restoration of hand grasp

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 8 )