Cart (Loading....) | Create Account
Close category search window
 

Fast point-based 3-D alignment of live cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Matula, P. ; Fac. of Informatics, Masaryk Univ., Brno, Czech Republic ; Matula, P. ; Kozubek, M. ; Dvorak, V.

Typical time intervals between acquisitions of three-dimensional (3-D) images of the same cell in live cell imaging are in the orders of minutes. In the meantime, the live cell can move in a water basin on the stage. This movement can hamper the studies of intranuclear processes. We propose a fast point-based image registration method for the suppression of the movement of a cell as a whole in the image data. First, centroids of certain intracellular objects are computed for each image in a time-lapse series. Then, a matching between the centroids, which have the maximal number of pairs, is sought between consecutive point sets by a 3-D extension of a two-dimensional fast point pattern matching method, which is invariant to rotation, translation, local distortion, and extra/missing points. The proposed 3-D extension assumes rotations only around the z axis to retain the complexity of the original method. The final step involves computing the optimal fully 3-D transformation between images from corresponding points in the least-squares manner. The robustness of the method was evaluated on generated data. The results of the simulations show that the method is very precise and its correctness can be estimated. This article also presents two practical application examples, namely the registration of images of HP1 domains and the registration of images of telomeres. More than 97% of time-consecutive images were successfully registered. The results show that the method is very well suited to live cell imaging.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 8 )

Date of Publication:

Aug. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.