By Topic

Estimation of optimal PDE-based denoising in the SNR sense

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gilboa, G. ; Dept. of Math., California Univ., Los Angeles, CA ; Sochen, N. ; Zeevi, Y.Y.

This paper is concerned with finding the best partial differential equation-based denoising process, out of a set of possible ones. We focus on either finding the proper weight of the fidelity term in the energy minimization formulation or on determining the optimal stopping time of a nonlinear diffusion process. A necessary condition for achieving maximal SNR is stated, based on the covariance of the noise and the residual part. We provide two practical alternatives for estimating this condition by observing that the filtering of the image and the noise can be approximated by a decoupling technique, with respect to the weight or time parameters. Our automatic algorithm obtains quite accurate results on a variety of synthetic and natural images, including piecewise smooth and textured ones. We assume that the statistics of the noise were previously estimated. No a priori knowledge regarding the characteristics of the clean image is required. A theoretical analysis is carried out, where several SNR performance bounds are established for the optimal strategy and for a widely used method, wherein the variance of the residual part equals the variance of the noise

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 8 )