By Topic

Face recognition using recursive Fisher linear discriminant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiang, C. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore ; Fan, X.A. ; Lee, T.H.

Fisher linear discriminant (FLD) has recently emerged as a more efficient approach for extracting features for many pattern classification problems as compared to traditional principal component analysis. However, the constraint on the total number of features available from FLD has seriously limited its application to a large class of problems. In order to overcome this disadvantage, a recursive procedure of calculating the discriminant features is suggested in this paper. The new algorithm incorporates the same fundamental idea behind FLD of seeking the projection that best separates the data corresponding to different classes, while in contrast to FLD the number of features that may be derived is independent of the number of the classes to be recognized. Extensive experiments of comparing the new algorithm with the traditional approaches have been carried out on face recognition problem with the Yale database, in which the resulting improvement of the performances by the new feature extraction scheme is significant

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 8 )