By Topic

High-performance JPEG 2000 encoder with rate-distortion optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hung-Chi Fang ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei ; Yu-Wei Chang ; Tu-Chih Wang ; Chao-Tsung Huang
more authors

An 81 MSamples/s JPEG 2000 single-chip encoder is implemented on 5.5 mm2 area using 0.25-mum CMOS technology. This IC can losslessly encode HDTV 720p resolution at 30 frames/s in real time. Three techniques are adopted: line-based discrete wavelet transform, parallel embedded block coding, and precompression rate-distortion optimization. The line-based discrete wavelet transform achieves the minimum external memory access, while the internal memory is reduced by a proper memory access scheme. The parallel embedded block coding increases the throughput and reduces the memory bandwidth with similar hardware cost comparing to conventional architectures. By accurately estimating bit rates, the precompression rate-distortion optimization reduces the required computational power and processing time of the embedded block coding since the code-blocks are truncated before compression. Experimental results show that this encoder has the highest throughput with the smallest area compared with other designs in the literature

Published in:

Multimedia, IEEE Transactions on  (Volume:8 ,  Issue: 4 )