By Topic

Improving urban road extraction in high-resolution images exploiting directional filtering, perceptual grouping, and simple topological concepts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gamba, P. ; Dipt. di Elettronica, Pavia Univ. ; Dell'Acqua, F. ; Lisini, G.

In this letter, the problem of detecting urban road networks from high-resolution optical/synthetic aperture radar (SAR) images is addressed. To this end, this letter exploits a priori knowledge about road direction distribution in urban areas. In particular, this letter presents an adaptive filtering procedure able to capture the predominant directions of these roads and enhance the extraction results. After road element extraction, to both discard redundant segments and avoid gaps, a special perceptual grouping algorithm is devised, exploiting colinearity as well as proximity concepts. Finally, the road network topology is considered, checking for road intersections and regularizing the overall patterns using these focal points. The proposed procedure was tested on a pair of very high resolution images, one from an optical sensor and one from a SAR sensor. The experiments show an increase in both the completeness and the quality indexes for the extracted road network

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:3 ,  Issue: 3 )