By Topic

A new machine learning paradigm for terrain reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
C. -W. T. Yeu ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Meng-Hiot Lim ; Guang-Bin Huang ; A. Agarwal
more authors

Terrain models that permit multiresolution access are essential for model predictive control of unmanned aerial vehicles in low-level flights. The authors present the extreme learning machine (ELM), a recently proposed learning paradigm, as a mechanism for learning the stored digital elevation information to allow multiresolution access. We give results of simulations designed to compare the performance of our approach with two other approaches for multiresolution access, namely: 1) linear interpolation on Delaunay triangles of the sampled terrain data points and 2) terrain learning using support vector machines (SVMs). The results show that to achieve the same mean square error during access, the memory needed in our approach is significantly lower. Additionally, the offline training time for the ELM network is much less than that for the SVM

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:3 ,  Issue: 3 )