Cart (Loading....) | Create Account
Close category search window
 

Power plant coordinated predictive control using neurofuzzy model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, X.J. ; Dept. of Autom., North China Electr. Power Univ., Beijing ; Guan, P. ; Liu, J.Z.

In unit steam-boiler generation, a coordinated control strategy is required to ensure a higher rate of load change without violating thermal constraints. The process is characterized by nonlinearity and uncertainty. While neural networks can model highly complex nonlinear dynamical systems, they produce black box models. This has led to significant interest in neuro-fuzzy networks (NFNs) to represent a nonlinear dynamical process by a set of locally valid and simpler submodels. Two alternative methods of exploiting the NFNs within a generalised predictive control (GPC) framework for nonlinear model predictive control are described. Coordinated control of steam-boiler generation using the two nonlinear GPC methods show excellent tracking and disturbance rejection results and improved performance compared with conventional linear GPC

Published in:

American Control Conference, 2006

Date of Conference:

14-16 June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.