By Topic

Error bounds based stochastic approximations and simulations of hybrid dynamical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abate, A. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA ; Ames, A.D. ; Sastry, S.

This paper introduces, develops and discusses an integration-inspired methodology for the simulation and analysis of deterministic hybrid dynamical systems. When simulating hybrid systems, and thus unavoidably introducing some numerical error, a progressive tracking of this error can be exploited to discern the properties of the system, i.e., it can be used to introduce a stochastic approximation of the original hybrid system, the simulation of which would give a more complete representation of the possible trajectories of the system. Moreover, the error can be controlled to check and even guarantee (in certain special cases) the robustness of simulated hybrid trajectories

Published in:

American Control Conference, 2006

Date of Conference:

14-16 June 2006