Cart (Loading....) | Create Account
Close category search window

Observer-based robust fuzzy control for vehicle lateral dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
El Hajjaji, A. ; Centre de Robotique, d''Electrotechnique et d''Automatique ; Chadli, M. ; Oudghiri, M. ; Pages, O.

In this paper, the robust fuzzy control for four wheels steering (4WS) vehicle dynamics is studied via a Takagi-Sugeno (T-S) uncertain fuzzy model when the road adhesion conditions change and the sideslip angle is unavailable for measurement. After giving the nonlinear model of the vehicle, its representation by a T-S uncertain fuzzy model is discussed. Next, based on the uncertain fuzzy model of the 4WS Vehicle a fuzzy controller and a fuzzy observer are developed. The closed loop stability conditions of a vehicle with the fuzzy controller and the observer are parameterized in terms of linear matrix inequality (LMI) problem which can be solved very efficiently using the convex optimization techniques. The numerical simulation of the vehicle handling with and without the use of the developed observer and controller has been carried out. The simulation results obtained indicate that considerable improvements in the vehicle handling can be achieved whenever the vehicle is governed by the proposed fuzzy observer and fuzzy controller

Published in:

American Control Conference, 2006

Date of Conference:

14-16 June 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.