By Topic

Determining the Optimal Timeout Values for a Power-Managed System based on the Theory of Markovian Processes: Offline and Online Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peng Rong ; Dept. of Electr. Eng., Southern California Univ., Los Angeles, CA ; Pedram, M.

This paper presents a timeout-driven DPM technique which relies on the theory of Markovian processes. The objective is to determine the energy-optimal timeout values for a system with multiple power saving states while satisfying a set of user defined performance constraints. More precisely, a controllable Markovian process is exploited to model the power management behavior of a system under the control of a timeout policy. Starting with this model, a perturbation analysis technique is applied to develop an offline gradient-based approach to determine the optimal timeout values. Online implementation of this technique for a system with dynamically-varying system parameters is also described. Experimental results demonstrate the effectiveness of the proposed approach

Published in:

Design, Automation and Test in Europe, 2006. DATE '06. Proceedings  (Volume:1 )

Date of Conference:

6-10 March 2006