By Topic

Reducing the Sub-threshold and Gate-tunneling Leakage of SRAM Cells using Dual-Vt and Dual-Tox Assignment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
B. Amelifard ; Department of EE-Systems University of Southern California Los Angeles, CA ; F. Fallah ; M. Pedram ; F. Fallah
more authors

Aggressive CMOS scaling results in low threshold voltage and thin oxide thickness for transistors manufactured in very deep submicron regime. As a result, reducing the subthreshold and gate-tunneling leakage currents has become one of the most important criteria in the design of VLSI circuits. This paper presents a method based on dual-V t and dual-Tox assignment to reduce the total leakage power dissipation of SRAMs while maintaining their performance. The proposed method is based on the observation that the read and write delays of a memory cell in an SRAM block depend on the physical distance of the cell from the sense amplifier and the decoder. Thus, the idea is to deploy different types of six-transistor SRAM cells corresponding to different threshold voltage and oxide thickness assignments for the transistors. Unlike other techniques for low-leakage SRAM design, the proposed technique incurs neither area nor delay overhead. In addition, it results in a minor change in the SRAM design flow. Simulation results with a 65 nm process demonstrate that this technique can reduce the total leakage power dissipation of a 64 Kb SRAM by more than 50%

Published in:

Proceedings of the Design Automation & Test in Europe Conference  (Volume:1 )

Date of Conference:

6-10 March 2006