By Topic

Designing MRF based Error Correcting Circuits for Memory Elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
K. Nepal ; Brown University, Division of Engineering, Providence, RI 02912 ; R. I. Bahar ; J. Mundy ; W. R. Patterson
more authors

As devices are scaled to the nanoscale regime, it is clear that future nanodevices will be plagued by higher soft error rates and reduced noise margins. Traditional implementations of error correcting codes (ECC) can add to the reliability of systems but can be ineffective in highly noisy operating conditions. This paper proposes an implementation of ECC based on the theory of Markov random fields (MRF). The MRF probabilistic model is mapped onto CMOS circuitry, using feedback between transistors to reinforce the correct joint probability of valid logical states. We show that our MRF approach provides superior noise immunity for memory systems that operate under highly noisy conditions

Published in:

Proceedings of the Design Automation & Test in Europe Conference  (Volume:1 )

Date of Conference:

6-10 March 2006