By Topic

Solving optimal feedback control problems by the Hamilton-Jacobi theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Park, C. ; Dept. of Aerosp. Eng., Michigan Univ., Ann Arbor, MI ; Scheeres, D.J.

We propose a novel approach for solving the optimal feedback control problem. Following our previous researches, we construct a Hamiltonian system by using the necessary conditions for optimality, and treat the resultant phase flow as a canonical transformation. Then starting from the Hamilton-Jacobi equations for generating functions we derive a set of 1st order quasilinear partial differential equations with the relevant terminal conditions, which forms the well-known Cauchy problem. These equations can also be obtained by applying the invariant imbedding technique to the two point boundary value problem. The solution to this Cauchy problem is utilized for solving the optimal feedback control problem with hard and soft constraint boundary conditions. As suggested by the illustrative examples, this method is promising for solving problems with control constraints, non-smooth control logic, and nonanalytic cost function

Published in:

American Control Conference, 2006

Date of Conference:

14-16 June 2006