Cart (Loading....) | Create Account
Close category search window
 

An intelligent agent-based self-evolving maintenance and operations reasoning system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Tang ; Impact Technol., LLC, Rochester, NY ; Kacprzynski, G.J. ; Bock, J.R. ; Begin, M.

Joint Strike Fighter (JSF) autonomic logistics seeks to reduce development, production, and ownership costs for the next generation fighter aircraft by increasing system reliability, while reducing maintenance requirements to essential levels. Prognostics and health management (PHM), which enables maintenance to be planned on the basis of actual component or system health state, represents a key component within the autonomic logistics system architecture. The challenge is to develop advanced technology to integrate PHM information from a variety of different sources into a dynamically evolving knowledge base. Prototype software described herein and referred to as the self evolving maintenance and operations reasoning system (SEMOR), utilizes intelligent software agents in JADE, both model and case-based reasoners and reinforcement learning modules. The fundamental approach enables PHM reasoning to be effective in the absence of field experience through the model-based reasoning module as well as realize the benefits of case based reasoning as a PHM knowledge base grows. A reinforcement learning (RL) module is employed to evolve a maintenance integrated model (MIM), a database containing PHM and maintenance relationships and attributes. Intelligent software agents are used in their true capacity to negotiate decisions regarding database adaptation, maintenance, and logistics actions prior to human review. This paper presents the software system design, describes key technical components, provides a demonstration scenario and concludes with remarks on the technical challenges and future developments

Published in:

Aerospace Conference, 2006 IEEE

Date of Conference:

0-0 0

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.