By Topic

Classification trees with neural network feature extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Guo ; Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; S. B. Gelfand

The ideal use of small multilayer nets at the decision nodes of a binary classification tree to extract nonlinear features is proposed. The nets are trained and the tree is grown using a gradient-type learning algorithm in the multiclass case. The method improves on standard classification tree design methods in that it generally produces trees with lower error rates and fewer nodes. It also reduces the problems associated with training large unstructured nets and transfers the problem of selecting the size of the net to the simpler problem of finding a tree of the right size. An efficient tree pruning algorithm is proposed for this purpose. Trees constructed with the method and the CART method are compared on a waveform recognition problem and a handwritten character recognition problem. The approach demonstrates significant decrease in error rate and tree size. It also yields comparable error rates and shorter training times than a large multilayer net trained with backpropagation on the same problems

Published in:

IEEE Transactions on Neural Networks  (Volume:3 ,  Issue: 6 )