Cart (Loading....) | Create Account
Close category search window
 

Multiple object tracking using particle filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jaward, M. ; Dept. of Electr. & Electron. Eng., Bristol Univ. ; Mihaylova, L. ; Canagarajah, N. ; Bull, D.

The particle filtering technique with multiple cues such as colour, texture and edges as observation features is a powerful technique for tracking deformable objects in image sequences with complex backgrounds. In this paper, our recent work (Brasnett et al., 2005) on single object tracking using particle filters is extended to multiple objects. In the proposed scheme, track initialisation is embedded in the particle filter without relying on an external object detection scheme. The proposed scheme avoids the use of hybrid state estimation for the estimation of number of active objects and its associated state vectors as proposed in (Czyz et al., 2005). The number of active objects and track management are handled by means of probabilities of the number of active objects in a given frame. These probabilities are shown to be easily estimated by the Monte Carlo data association algorithm used in our algorithm. The proposed particle filter (PF) embeds a data association technique based on the joint probabilistic data association (JPDA) which handles the uncertainty of the measurement origin. The algorithm is able to cope with partial occlusions and to recover the tracks after temporary loss. The probabilities calculated for data associations take part in the calculation of probabilities of the number of objects. We evaluate the performance of the proposed filter on various real-world video sequences with appearing and disappearing targets

Published in:

Aerospace Conference, 2006 IEEE

Date of Conference:

0-0 0

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.