By Topic

Gaussian networks for direct adaptive control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. M. Sanner ; Nonlinear Syst. Lab., MIT, Cambridge, MA, USA ; J. -J. E. Slotine

A direct adaptive tracking control architecture is proposed and evaluated for a class of continuous-time nonlinear dynamic systems for which an explicit linear parameterization of the uncertainty in the dynamics is either unknown or impossible. The architecture uses a network of Gaussian radial basis functions to adaptively compensate for the plant nonlinearities. Under mild assumptions about the degree of smoothness exhibit by the nonlinear functions, the algorithm is proven to be globally stable, with tracking errors converging to a neighborhood of zero. A constructive procedure is detailed, which directly translates the assumed smoothness properties of the nonlinearities involved into a specification of the network required to represent the plant to a chosen degree of accuracy. A stable weight adjustment mechanism is determined using Lyapunov theory. The network construction and performance of the resulting controller are illustrated through simulations with example systems

Published in:

IEEE Transactions on Neural Networks  (Volume:3 ,  Issue: 6 )