Cart (Loading....) | Create Account
Close category search window

Characterizing robust coordination algorithms via proximity graphs and set-valued maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Cortes, J. ; Dept. of Appl. Math. & Stat., California Univ., Santa Cruz, CA

This paper studies correctness and robustness properties of motion coordination algorithms with respect to link failures in the network topology. The technical approach relies on computational geometric tools such as proximity graphs, nondeterministic systems defined via set-valued maps and Lyapunov stability analysis. The manuscript provides two general results to help characterize the asymptotic behavior of spatially distributed coordination algorithms. These results are illustrated in rendezvous and flocking coordination algorithms

Published in:

American Control Conference, 2006

Date of Conference:

14-16 June 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.