By Topic

Comparison of controller designs for an experimental flexible structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lim, K.B. ; NASA Langley Res. Center, Hampton, VA, USA ; Maghami, P.G. ; Joshi, S.M.

Control system design and hardware testing are addressed for an experimental structure displaying the characteristics of a typical large flexible spacecraft. The practical aspects associated with designing and implementing various control design methodologies for a real system are described, and the results are given. The design methodologies under investigation include linear-quadratic-Gaussian (LQG) control, static and dynamic dissipative control, and H/sub infinity / optimal control. The merit of each design is based on its capacity for vibration suppression, its stability robustness characteristics with respect to unmodeled dynamics, and its ease of design and implementation. Among the three controllers considered, it is shown, through computer simulation and laboratory experiments, that the dynamic dissipative controller gives the best results.<>

Published in:

Control Systems, IEEE  (Volume:12 ,  Issue: 3 )