Cart (Loading....) | Create Account
Close category search window
 

On the reconstruction aspects of moment descriptors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pawlak, M. ; Dept. of Electr. & Comput. Eng., Manitoba Univ., Winnipeg, Man., Canada

The problem of reconstruction of an image from discrete and noisy data by the method of moments is examined. The set of orthogonal moments based on Legendre polynomials is employed. A general class of signal-dependent noise models is taken into account. An asymptotic expansion for the global reconstruction error is established. This reveals mutual relationships between a number of moments, the image smoothness, sampling rate, and noise model characteristics. The problem of an automatic (data-driven) section of an optimal number of moments is studied. This is accomplished with the help of cross-validation techniques

Published in:

Information Theory, IEEE Transactions on  (Volume:38 ,  Issue: 6 )

Date of Publication:

Nov 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.