By Topic

Observability analysis of piece-wise constant systems. II. Application to inertial navigation in-flight alignment [military applications]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goshen-Meskin, D. ; MALAT-Israel Aircraft Ind., Ben Gurion Int. Airport, Israel ; Bar-Itzhack, I.Y.

For pt.I see ibid., vol.28, no.4, p.1056-67, Oct. 1992. The method of analyzing the observability of time-varying linear systems as piecewise constant systems (PWCS) is applied to the analysis of in-flight alignment (IFA) of inertial navigation systems (INS) whose estimability is known to be enhanced by maneuvers. The validity of this approach to the analysis of IFA is proven. The analysis lays the theoretical background to, and clearly demonstrates the observability enhancement of, IFA. The analytic conclusions are confirmed by covariance simulations. Although INS IFA was handled to various degrees in the past, a comprehensive control theoretic approach to the problem is introduced. The analysis yields practical conclusions and a procedure previously unknown

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:28 ,  Issue: 4 )