By Topic

Resource Allocation for Session-Based Two-Dimensional Service Differentiation on e-Commerce Servers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaobo Zhou ; Dept. of Comput. Sci., Colorado Univ., Colorado Springs, CO ; Wei, J. ; Cheng-Zhong Xu

A scalable e-commerce server should be able to provide different levels of quality of service (QoS) to different types of requests based on clients' navigation patterns and the server capacity. E-commerce workloads are composed of sessions. In this paper, we propose a session-based two-dimensional (2D) service differentiation model for online transactions: intersession and intrasession. The intersession model aims to provide different levels of QoS to sessions from different customer classes, and the intrasession model aims to provide different levels of QoS to requests in different states of a session. A primary performance metric of online transactions is slowdown. It measures the waiting time of a request relative to its service time. We present a processing rate allocation scheme for 2D proportional slowdown differentiation. We then introduce service slowdown as a systemwide QoS metric of an e-commerce server. It is defined as the weighted sum of request slowdown in different sessions and in different session states. We formulate the problem of 2D service differentiation as an optimization of processing rate allocation with the objective of minimizing the service slowdown of the server. We prove that the derived rate allocation scheme based on the optimization guarantees client requests' slowdown to be square-root proportional to their prespecified differentiation weights in both intersession and intrasession dimensions. We evaluate this square-root proportional rate allocation scheme and a proportional rate allocation scheme via extensive simulations. Results validate that both schemes can achieve predictable, controllable, and fair 2D service differentiation on e-commerce servers. The square-root proportional rate allocation scheme provides 2D service differentiation at a minimum cost of service slowdown

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:17 ,  Issue: 8 )