By Topic

System-on-Chip: Reuse and Integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Saleh, R. ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Canada ; Wilton, S. ; Mirabbasi, S. ; Hu, A.
more authors

Over the past ten years, as integrated circuits became increasingly more complex and expensive, the industry began to embrace new design and reuse methodologies that are collectively referred to as system-on-chip (SoC) design. In this paper, we focus on the reuse and integration issues encountered in this paradigm shift. The reusable components, called intellectual property (IP) blocks or cores, are typically synthesizable register-transfer level (RTL) designs (often called soft cores) or layout level designs (often called hard cores). The concept of reuse can be carried out at the block, platform, or chip levels, and involves making the IP sufficiently general, configurable, or programmable, for use in a wide range of applications. The IP integration issues include connecting the computational units to the communication medium, which is moving from ad hoc bus-based approaches toward structured network-on-chip (NoC) architectures. Design-for-test methodologies are also described, along with verification issues that must be addressed when integrating reusable components.

Published in:

Proceedings of the IEEE  (Volume:94 ,  Issue: 6 )