Cart (Loading....) | Create Account
Close category search window
 

A pseudospectral method for the optimal control of constrained feedback linearizable systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qi Gong ; Dept. of Mech. & Astronaut. Eng., Naval Postgraduate Sch., Monterey, CA, USA ; Kang, W. ; Ross, I.M.

We consider the optimal control of feedback linearizable dynamical systems subject to mixed state and control constraints. In general, a linearizing feedback control does not minimize the cost function. Such problems arise frequently in astronautical applications where stringent performance requirements demand optimality over feedback linearizing controls. In this paper, we consider a pseudospectral (PS) method to compute optimal controls. We prove that a sequence of solutions to the PS-discretized constrained problem converges to the optimal solution of the continuous-time optimal control problem under mild and numerically verifiable conditions. The spectral coefficients of the state trajectories provide a practical method to verify the convergence of the computed solution. The proposed ideas are illustrated by several numerical examples.

Published in:

Automatic Control, IEEE Transactions on  (Volume:51 ,  Issue: 7 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.