By Topic

Reduced Complexity Blind Layered Space-Time Equalization for MIMO OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sarperi, L. ; Dept. of Electr. Eng. & Electron., Liverpool Univ. ; Xu Zhu ; Nandi, A.K.

This paper proposes a reduced complexity blind layered space-time equalization (LSTE) for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM). Blind source separation (BSS) combined with a vertical Bell Laboratories layered space-time (V-BLAST) scheme is used in a small portion of subcarriers to perform blind signal detection and channel estimation iteratively. In the remaining subcarriers the channel state information (CSI) is obtained by interpolation using the previously acquired CSI, and signal detection is subsequently carried out with a V-BLAST scheme. Compared to previous work where BSS is used in each subcarrier, the proposed system obtains similar performance while significantly reducing the computational complexity and improving the robustness to the propagation of permutation errors. Also, the performance of the blind LSTE can approach the ideal case with perfect CSI, by using a moderate number of iterations

Published in:

Personal, Indoor and Mobile Radio Communications, 2005. PIMRC 2005. IEEE 16th International Symposium on  (Volume:1 )

Date of Conference:

11-14 Sept. 2005