By Topic

Towards universal and statistical-driven heuristics for automatic classification of sports video events

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tjondronegoro, D. ; Sch. of Inf. Syst., Queensland Univ. of Technol., Brisbane, Qld. ; Chen, Y.-P.P.

Researchers worldwide have been actively seeking for the most robust and powerful solutions to detect and classify key events (or highlights) in various sports domains. Most approaches have employed manual heuristics that model the typical pattern of audio-visual features within particular sport events. To avoid manual observation and knowledge, machine-learning can be used as an alternative approach. To bridge the gaps between these two alternatives, an attempt is made to integrate statistics into heuristic models during highlight detection in our investigation. The models can be designed with a modest amount of domain-knowledge, making them less subjective and more robust for different sports. We have also successfully used a universal scope of detection and a standard set of features that can be applied for different sports that include soccer, basketball and Australian football. An experiment on a large dataset of sport videos, with a total of around 15 hours, has demonstrated the effectiveness and robustness of our algorithms

Published in:

Multi-Media Modelling Conference Proceedings, 2006 12th International

Date of Conference:

0-0 0