By Topic

An experimental evaluation of spam filter performance and robustness against attack

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Webb, S. ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA ; Chitti, S. ; Pu, C.

In this paper, we show experimentally that learning filters are able to classify large corpora of spam and legitimate email messages with a high degree of accuracy. The corpora in our experiments contain about half a million spam messages and a similar number of legitimate messages, making them two orders of magnitude larger than the corpora used in current research. The use of such large corpora represents a collaborative approach to spam filtering because the corpora combine spam and legitimate messages from many different sources. First, we show that this collaborative approach creates very accurate spam filters. Then, we introduce an effective attack against these filters which successfully degrades their ability to classify spam. Finally, we present an effective solution to the above attack which involves retraining the filters to accurately identify the attack messages

Published in:

Collaborative Computing: Networking, Applications and Worksharing, 2005 International Conference on

Date of Conference:

0-0 0