By Topic

A broadband and scalable on-chip inductor model appropriate for operation modes of varying substrate resistivities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. C. Guo ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; T. Y. Tan

A broadband and scalable model is developed to accurately simulate on-chip inductors of various dimensions and substrate resistivities. The broadband accuracy is proven over frequencies up to 20 GHz, even beyond resonance. A new scheme of RLC networks is deployed for spiral coils and substrate to account for 3D eddy current, substrate return path, and spiral coil to substrate coupling effects, etc. The 3D eddy current is identified as the key element essential to accurately simulate broadband characteristics. EM simulation using ADS momentum is conducted to predict the on-chip inductor performance corresponding to wide range of substrate resistivities (rhoSi=0.05~KOmega-cm). Three operation modes such as TEM, slow-wave, and eddy current are reproduced. The model parameters manifest themselves physics-base through relevant correlation with rhoSi over three operation modes. The onset of slow-wave mode can be consistently explained by a key element (RP) introduced in our model, which accounts for the conductor loss due to eddy current arising from magnetic field coupling through substrate return path. This broadband and scalable model is useful for RF circuit simulation. Besides, it can facilitate optimization design of on-chip inductors through physics-based model parameters relevant to varying substrate resistivities

Published in:

IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006

Date of Conference:

11-13 June 2006