Cart (Loading....) | Create Account
Close category search window
 

Methodologies for the design of LCC voltage-output resonant converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Foster, M.P. ; Electr. Machines & Drives Group, Univ. of Sheffield ; Sewell, H.I. ; Bingham, C.M. ; Stone, D.A.
more authors

The paper presents five structured design methodologies for third-order LCC voltage-output resonant converters. The underlying principle of each technique is based on an adaptation of a FMA equivalent circuit that accommodates the nonlinear behaviour of the converter. In contrast to previously published methods, the proposed methodologies explicitly incorporate the effects of the transformer magnetising inductance. Furthermore, a number of the methodologies allow the resonant-tank components to be specified at the design phase, thereby facilitating the use of standard off-the-shelf components. A procedure for sizing the filter capacitor is derived, and the use of error mapping, to identify parameter boundaries and provide the designer with a qualitative feel for the accuracy of a proposed converter design, is explored

Published in:

Electric Power Applications, IEE Proceedings -  (Volume:153 ,  Issue: 4 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.