Cart (Loading....) | Create Account
Close category search window
 

Adaptive backstepping control for linear-inductionmotor drive using FPGA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lin, F.-J. ; Dept. of Electr. Eng., Nat. Dong Hwa Univ., Taiwan ; Teng, L.-T. ; Chang, C.-K.

An adaptive backstepping controller is proposed to control the mover position of a linear-induction-motor (LIM) drive to compensate the uncertainties including the friction force. First, the dynamic model of an indirect field-oriented LIM drive is derived. Next, a backstepping approach is designed to compensate the uncertainties occurred in the motion-control system. Moreover, the uncertainties are lumped and the upper bound of the lumped uncertainty is necessary in the design of the backstepping controller. However, the upper bound of the lumped uncertainty is difficult to obtain in advance in practical applications. Therefore, an adaptive law is derived to adapt the value of the lumped uncertainty in real time, and an adaptive backstepping control law is resulted. Then, a field-programmable-gate-array (FPGA) chip is adopted to implement the indirect field-oriented mechanism and the developed control algorithms for possible low-cost and high-performance industrial applications. The effectiveness of the proposed control scheme is verified by some experimental results. With the adaptive backstepping controller, the mover position of the FPGA-based LIM drive possesses the advantages of good transient-control performance and robustness to uncertainties in the tracking of periodic reference trajectories

Published in:

Electric Power Applications, IEE Proceedings -  (Volume:153 ,  Issue: 4 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.