Cart (Loading....) | Create Account
Close category search window

Modeling and measurement of the acoustic lead sensitivity in sagnac fiber sensor arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Digonnet, M.J.F. ; Edward L. Ginzton Lab., Stanford Univ., CA, USA ; Bishop, M. ; Kino, Gordon S.

In this study, a theoretical model of the lead (delay coil and array buses) sensitivity in Sagnac sensor arrays (SSA) for underwater acoustic detection, which induces a spurious pickup and thus a sensor error, is described. In the worst-case scenario, the pickup in a 20-km coil is predicted to be reasonable in deep waters (quietest) (about 17 dB higher than the hydrophone signal) but fairly high (∼ 52 dB) in shallow waters (noisiest). We show that this pickup can be eliminated for the first few hydrophones in the array by optically folding or double winding the coil, although these approaches are not as effective for the most distant hydrophones in long arrays (≥ 1 km). These figures are confirmed experimentally in an SSA: Folding a 5-km coil decreased the relative pickup from ∼-42 dB for the first hydrophone and by ∼-8 dB for a hydrophone 1 km down the array. These results concur that for most practical arrays, it is imperative to isolate the coil in an acoustically shielded enclosure, which will reduce the coil pickup to an arbitrarily low level for all hydrophones. Theory and experiment also agree that the pickup in the array buses increases in proportion to the distance along the array. In the worst-case scenario (spherical acoustic wave incident normal to the array), the pickup in a 1-km bus is predicted to be ∼-7 dB in quiet waters and ∼-40 dB in noisy waters. However, in the field, the probability of this event is expected to be extremely low, and these values will be typically at least 15 dB weaker. Nevertheless, in long arrays, the bus pickup must be reduced, which can be achieved by desensitizing the bus fiber and/or pickup subtraction. Combined, these two techniques are expected to make the bus pickup under normal conditions negligible in deep-water applications (∼-48 dB) and acceptable in noisier shallow-water applications (∼-15 dB).

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 7 )

Date of Publication:

July 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.