Cart (Loading....) | Create Account
Close category search window
 

Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Jianxin Ma ; Sch. of Electron. Eng., Beijing Univ. of Posts & Telecommun., China ; Jianjun Yu ; Chongxiu Yu ; Zhensheng Jia
more authors

The dual-pump all-optical wavelength conversion based on a four-wave mixing (FWM) in a high-nonlinear dispersion shifted fiber (HNL-DSF) is demonstrated experimentally. The polarization sensitivity of the wavelength converter based on this dual-pump figuration is investigated experimentally and theoretically. The experimental results indicate that the wavelength-conversion configuration with copolarization pumps shows the smallest polarization sensitivity. A model of the beating-wave modulation from the dynamic wave equation is erected to explain the experimental phenomena, and the theoretical analyses agree well with the experimental results.

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 7 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.