By Topic

Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
P. J. Delfyett ; Florida Photonics Center of Excellence, Univ. of Central Florida, Orlando, FL, USA ; S. Gee ; Myoung-Taek Choi ; H. Izadpanah
more authors

Modelocked semiconductor lasers are used to generate a set of phase-locked optical frequencies on a periodic grid. The periodic and phase coherent nature of the optical frequency combs makes it possible for the realization of high-performance optical and RF arbitrary-waveform synthesis. In addition, the resulting optical frequency components can be used for communication applications relying on direct detection, dense wavelength division multiplexing (WDM), coherent-detection WDM, optical time-division multiplexing, and optical code division multiple access. This paper highlights the recent results in the use of optical frequency combs generated from semiconductors for ultrawideband signal processing and communication applications.

Published in:

Journal of Lightwave Technology  (Volume:24 ,  Issue: 7 )