By Topic

All-optical signal processing using χ(2) nonlinearities in guided-wave devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Langrock, C. ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Kumar, S. ; McGeehan, J.E. ; Willner, A.E.
more authors

The authors present a review of all-optical signal-processing technologies based on χ(2) nonlinear interactions in guided-wave devices and their applications for telecommunication. In this study, the main focus is on three-wave interactions in annealed proton-exchanged periodically poled lithium niobate waveguides due to their suitable properties with respect to nonlinear mixing efficiency, propagation loss, and ease of fabrication. These devices allow the implementation of advanced all-optical signal-processing functions for next-generation networks with signal bandwidths beyond 1 THz. In this paper, integrated structures that will allow for improvements of current signal-processing functions as well as the implementation of novel device concepts are also presented.

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 7 )