By Topic

On the cascade of incoherent discrete-time microwave photonic filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Capmany, J. ; Opt. Commun. Group, Univ. Politecnica de Valencia, Spain

In this study, a theoretical analysis leading to the derivation of the overall incoherent transfer function of a microwave photonic filter composed of the cascade of two optical structures is developed. Two cases that are more common in practice are considered, i.e., 1) a filter illuminated by a single optical source and 2) a compound filter illuminated by an optical source array. In both cases, the conditions on which the overall incoherent transfer function can be expressed as the product of the individual incoherent transfer functions of each of the optical structures that compose the filter are investigated. In other words, the conditions where the end-to-end electrical linearity is preserved when cascading incoherent optical structures are studied. These results are of importance for the design of complex incoherent filter structures aiming to provide high Q or single resonance performance.

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 7 )