By Topic

Application of Simulated Annealing to the Biclustering of Gene Expression Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bryan, K. ; Machine Learning Group, Trinity Coll. Dublin ; Cunningham, P. ; Bolshakova, N.

In a gene expression data matrix, a bicluster is a submatrix of genes and conditions that exhibits a high correlation of expression activity across both rows and columns. The problem of locating the most significant bicluster has been shown to be NP-complete. Heuristic approaches such as Cheng and Church's greedy node deletion algorithm have been previously employed. It is to be expected that stochastic search techniques such as evolutionary algorithms or simulated annealing might improve upon such greedy techniques. In this paper we show that an approach based on simulated annealing is well suited to this problem, and we present a comparative evaluation of simulated annealing and node deletion on a variety of datasets. We show that simulated annealing discovers more significant biclusters in many cases. Furthermore, we also test the ability of our technique to locate biologically verifiable biclusters within an annotated set of genes

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 3 )