By Topic

Combining Wavelet Analysis and Bayesian Networks for the Classification of Auditory Brainstem Response

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rui Zhang ; Sch. of Comput. & Math., Univ. of Ulster, Jordanstown ; McAllister, G. ; Scotney, B. ; McClean, S.
more authors

The auditory brainstem response (ABR) has become a routine clinical tool for hearing and neurological assessment. In order to pick out the ABR from the background EEG activity that obscures it, stimulus-synchronized averaging of many repeated trials is necessary, typically requiring up to 2000 repetitions. This number of repetitions can be very difficult, time consuming and uncomfortable for some subjects. In this study, a method combining wavelet analysis and Bayesian networks is introduced to reduce the required number of repetitions, which could offer a great advantage in the clinical situation. 314 ABRs with 64 repetitions and 155 ABRs with 128 repetitions recorded from eight subjects are used here. A wavelet transform is applied to each of the ABRs, and the important features of the ABRs are extracted by thresholding and matching the wavelet coefficients. The significant wavelet coefficients that represent the extracted features of the ABRs are then used as the variables to build the Bayesian network for classification of the ABRs. In order to estimate the performance of this approach, stratified ten-fold cross-validation is used

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:10 ,  Issue: 3 )