By Topic

ICCAP-a linear time sparsification and reordering algorithm for 3-D BEM capacitance extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rong Jiang ; Cadence Design Syst. Inc., San Jose, CA, USA ; Yi-Hao Chang ; Chen, C.C.

This paper presents an efficient, simple, hierarchical, and sparse three-dimensional capacitance extraction algorithm, i.e., ICCAP. Most previous capacitance extraction algorithms, such as FastCap and HiCap, introduce intermediate variables to facilitate the hierarchical potential calculation, but still preserve the basic panels as basis. In this paper, we discover that those intermediate variables are a fundamentally much better basis than leaf panels. As a result, we are able to explicitly construct the sparse potential coefficient matrix and solve it with linear memory and linear run time in comparison with the most recent hierarchical O(nlogn) approach in PHiCap. Furthermore, the explicit sparse formulation of a potential matrix not only enables the usage of preconditioned Krylov subspace iterative methods, but also the reordering technique. A new reordering technique, i.e., level-oriented reordering (LOR), is proposed to further reduce over 20% of memory consumption and run time compared with no reordering techniques applied. In fact, LOR is even better than the state-of-the-art minimum degree reordering and more efficient. Without complicated orthonormalization matrix computation, ICCAP is very simple, efficient, and accurate. Experimental results demonstrate the superior run time and memory consumption over previous approaches while achieving similar accuracy.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 7 )