By Topic

On the simulation of low-frequency noise upconversion in InGaP/GaAs HBTs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Rudolph ; Ferdinand-Braun-Inst. fur Hochsfrequenstech., Berlin, Germany ; F. Lenk ; O. Llopis ; W. Heinrich

Residual phase-noise measurements of GaAs heterojunction bipolar transistors (HBTs) with different low-frequency noise properties are used to investigate how accurate a compact HBT model can predict the upconversion of low-frequency noise under nonlinear operation. We find that the traditional low-frequency source implementation, as well as a cyclostationary noise source implementation, have shortcomings under different operation conditions. While, in general, the cyclostationary approach yields much better results, it fails under certain operation conditions. Experimental evidence is given that this is caused by overestimated correlation between baseband noise and RF noise sidebands. It is shown that a model based on cyclostationary sources with reduced cross-correlation yields good agreement between measurement and simulation in all cases.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:54 ,  Issue: 7 )