Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Nonuniform grid time domain (NGTD) algorithm for fast evaluation of transient wave fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Boag, A. ; Sch. of Electr. Eng., Tel Aviv Univ., Israel ; Lomakin, V. ; Michielssen, E.

A novel algorithm to efficiently compute transient wave fields produced by known three-dimensional source constellations is proposed. The algorithm uses domain decomposition concepts and comprises two steps to be repeated for each subdomain considered. In the first step, delay- and amplitude-compensated fields, produced by sources residing inside each subdomain are computed at a sparse set of points surrounding the observation domain. In the second step, total fields in the observer domain are evaluated by interpolation, delay and amplitude restoration, and aggregation of subdomain fields. The proposed scheme is well-suited to accelerate the solution of time domain integral equations by marching on in time, to carry out time domain physical optics calculations, and to realize near- to far-field transformations of transients. Moreover, the scheme automatically adapts to, and takes advantage of, special geometrical features of the source-observer constellation studied, a key benefit when analyzing quasi-planar configurations. In addition, it realizes a seamless transition from the dynamic to the quasi-static regime, thus facilitating a unified treatment of electrically large and small problems. Last but not least, the scheme is remarkably simple to implement.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 7 )