By Topic

Scaling results on the sum capacity of cellular networks with MIMO links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. Aktas ; Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey ; M. N. Bacha ; J. S. Evans ; S. V. Hanly

Scaling results for the sum capacity of the multiple access, uplink channel are provided for a flat-fading environment, with multiple-input-multiple-output (MIMO) links, when there is interference from other cells. The classical MIMO scaling regime is considered in which the number of antennas per user and per base station grow large together. Utilizing the known characterizations of the limiting eigenvalue distributions of large random matrices, the asymptotic behavior of the sum capacity of the system is characterized for an architecture in which the base stations cooperate in the joint decoding process of all users (macrodiversity). This asymptotic sum capacity is compared with that of the conventional scenario in which the base stations only decode the users in their cells. For the case of base station cooperation, an interesting "resource pooling" phenomenon is observed: in some cases, the limiting performance of a macrodiversity multiuser network has the same asymptotic behavior as that of a single-user MIMO link with an equivalent amount of pooled received power. This resource pooling phenomenon allows us to derive an elegant closed-form expression for the sum capacity of a new version of Wyner's classical model of a cellular network, in which MIMO links are incorporated into the model.

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 7 )