Cart (Loading....) | Create Account
Close category search window
 

Mean field and mixed mean field iterative decoding of low-density parity-check codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Juntan Zhang ; Dept. of Electr. Eng., Hawaii Univ., Honolulu, HI, USA ; Fossorier, M.

In this paper, the mean field (MF) and mixed mean field (MMF) algorithms for decoding low-density parity-check (LDPC) codes are considered. The MF principle is well established in statistical physics and artificial intelligence. Instead of using a single completely factorized approximated distribution as in the MF approach, the mixed MF algorithm forms a weighted average of several MF distributions as an approximation of the true posterior probability distribution. The MF decoding algorithm for linear block codes is derived and shown to be an approximation of the a posteriori probability (APP) decoding algorithm. The MF approach is then developed in the context of iterative decoding and presented as an approximation of the popular belief propagation decoding method. These results are extended to iterative decoding with the MMF algorithm. Simulation results show that the MF and MMF decoding algorithms yield a good performance-complexity tradeoff, especially when employed for decoding LDPC codes based on finite geometries.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 7 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.