By Topic

Mean field and mixed mean field iterative decoding of low-density parity-check codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Juntan Zhang ; Dept. of Electr. Eng., Hawaii Univ., Honolulu, HI, USA ; M. Fossorier

In this paper, the mean field (MF) and mixed mean field (MMF) algorithms for decoding low-density parity-check (LDPC) codes are considered. The MF principle is well established in statistical physics and artificial intelligence. Instead of using a single completely factorized approximated distribution as in the MF approach, the mixed MF algorithm forms a weighted average of several MF distributions as an approximation of the true posterior probability distribution. The MF decoding algorithm for linear block codes is derived and shown to be an approximation of the a posteriori probability (APP) decoding algorithm. The MF approach is then developed in the context of iterative decoding and presented as an approximation of the popular belief propagation decoding method. These results are extended to iterative decoding with the MMF algorithm. Simulation results show that the MF and MMF decoding algorithms yield a good performance-complexity tradeoff, especially when employed for decoding LDPC codes based on finite geometries.

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 7 )