Cart (Loading....) | Create Account
Close category search window
 

Face recognition using kernel scatter-difference-based discriminant analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qingshan Liu ; Inst. of Autom., Acad. Sinica, Beijing, China ; Xiaoou Tang ; Hanqing Lu ; Songde Ma

There are two fundamental problems with the Fisher linear discriminant analysis for face recognition. One is the singularity problem of the within-class scatter matrix due to small training sample size. The other is that it cannot efficiently describe complex nonlinear variations of face images because of its linear property. In this letter, a kernel scatter-difference-based discriminant analysis is proposed to overcome these two problems. We first use the nonlinear kernel trick to map the input data into an implicit feature space F. Then a scatter-difference-based discriminant rule is defined to analyze the data in F. The proposed method can not only produce nonlinear discriminant features but also avoid the singularity problem of the within-class scatter matrix. Extensive experiments show encouraging recognition performance of the new algorithm.

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 4 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.