By Topic

Stable neurovisual servoing for robot manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

In this paper, we propose a stable neurovisual servoing algorithm for set-point control of planar robot manipulators in a fixed-camera configuration an show that all the closed-loop signals are uniformly ultimately bounded (UUB) and converge exponentially to a small compact set. We assume that the gravity term and Jacobian matrix are unknown. Radial basis function neural networks (RBFNNs) with online real-time learning are proposed for compensating both gravitational forces and errors in the robot Jacobian matrix. The learning rule for updating the neural network weights, similar to a back propagation algorithm, is obtained from a Lyapunov stability analysis. Experimental results on a two degrees of freedom manipulator are presented to evaluate the proposed controller.

Published in:

IEEE Transactions on Neural Networks  (Volume:17 ,  Issue: 4 )