Cart (Loading....) | Create Account
Close category search window
 

Cooperative information maximization with Gaussian activation functions for self-organizing maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kamimura, R. ; Inf. Sci. Lab., Tokai Univ., Kanagawa, Japan

In this paper, we propose a new information-theoretic method to produce explicit self-organizing maps (SOMs). Competition is realized by maximizing mutual information between input patterns and competitive units. Competitive unit outputs are computed by the Gaussian function of distance between input patterns and competitive units. A property of this Gaussian function is that, as distance becomes smaller, a neuron tends to fire strongly. Cooperation processes are realized by taking into account the firing rates of neighboring neurons. We applied our method to uniform distribution learning, chemical compound classification and road classification. Experimental results confirmed that cooperation processes could significantly increase information content in input patterns. When cooperative operations are not effective in increasing information, mutual information as well as entropy maximization is used to increase information. Experimental results showed that entropy maximization could be used to increase information and to obtain clearer SOMs, because competitive units are forced to be equally used on average.

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 4 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.