Cart (Loading....) | Create Account
Close category search window
 

Real-time learning capability of neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guang-bin Huang ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Qin-Yu Zhu ; Chee-Kheong Siew

In some practical applications of neural networks, fast response to external events within an extremely short time is highly demanded and expected. However, the extensively used gradient-descent-based learning algorithms obviously cannot satisfy the real-time learning needs in many applications, especially for large-scale applications and/or when higher generalization performance is required. Based on Huang's constructive network model, this paper proposes a simple learning algorithm capable of real-time learning which can automatically select appropriate values of neural quantizers and analytically determine the parameters (weights and bias) of the network at one time only. The performance of the proposed algorithm has been systematically investigated on a large batch of benchmark real-world regression and classification problems. The experimental results demonstrate that our algorithm can not only produce good generalization performance but also have real-time learning and prediction capability. Thus, it may provide an alternative approach for the practical applications of neural networks where real-time learning and prediction implementation is required.

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 4 )

Date of Publication:

July 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.