By Topic

Performance modeling using Monte Carlo simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Srinivasan ; New Mexico State Univ., Las Cruces, NM, USA ; J. Cook ; O. Lubeck

Cycle accurate simulation has long been the primary tool for micro-architecture design and evaluation. Though accurate, the slow speed often imposes constraints on the extent of design exploration. In this work, we propose a fast, accurate Monte-Carlo based model for predicting processor performance. We apply this technique to predict the CPI of in-order architectures and validate it against the Itanium-2. The Monte Carlo model uses micro-architecture independent application characteristics, and cache, branch predictor statistics to predict CPI with an average error of less than 7%. Since prediction is achieved in a few seconds, the model can be used for fast design space exploration that can efficiently cull the space for cycle-accurate simulations. Besides accurately predicting CPI, the model also breaks down CPI into various components, where each component quantifies the effect of a particular stall condition (branch misprediction, cache miss, etc.) on overall CPI. Such a CPI decomposition can help processor designers quickly identify and resolve critical performance bottlenecks

Published in:

IEEE Computer Architecture Letters  (Volume:5 ,  Issue: 1 )